高二物理 法拉第电磁感应定律 题如图 求详解 急急急!!
一.电磁炉:电磁炉内炉面一般是耐热陶瓷板,下方有一铜线制线圈, 线圈产生交流磁场(强弱不停变化的磁场),交流磁场通过放在炉面上的铁磁性金属器皿时,能量以两种物理现象在器皿内转化成热能:曲线在匀强磁场中做切割磁场线的运动时,如果用E=BLV来求产生的感应电动势,式中的L是该曲线的有效长度.!在此题中,L就是这个半圆环的直径d!
电磁感应定律ppt_电磁感应定律的物理意义
电磁感应定律ppt_电磁感应定律的物理意义
4.对电磁感应的理解:
可证明如下:E=△Φ/△t=B△S/△t=B((S2+π(d/2)^2)-(S1+π(d/2)^2))/△t=B(S2-S1)/△t=BdV△t/△t
=BdV ! 式中的(S2+π(d/2)^2)) 和(S法拉第电磁感应定律的公式:1+π(d/2)^2)) 分别是半圆环在时间△t末和初与导轨包围的面积.
法拉第的电磁感应定律公式是什么?
问上面已经写了。1、E=nΔΦ/Δt(普适公bai式){法拉第电磁感应定du律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt磁通zhi量的变化率}
2、E=BLVsinA(切割磁感线运动) E=BLV中的v和L不可以和磁感线平行,但可以不和磁感线垂直,其中角A为v或L与磁感线的夹角。{L:有效长度(m)}
3、Em=nBSω(交流发电机的感应电动势){Em:感应电动势峰值}
4、E=B(L^2)ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
扩展资料:
感应电动势相关现象:电磁感应
重要实验:电磁感应现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流(感生电流)。具体可以看参考资料
在一个空心纸筒上绕上一组和电流计联接的导体线圈,当磁棒线圈的过程中,电流计的指针发生了偏转,而在磁棒从线圈内抽出的过程中,电流计的指针则发生反方向的偏转,磁棒或抽出线圈的速度越快,电流计偏转的角度越大.但是当磁棒不动时,电流计的指针不会偏转。
对于线圈来说,运动的磁棒意味着它周围的磁场发生了变化,从而使线圈感生出电流.法拉第终于实现了他多年的梦想——用磁的运动产生电!奥斯特和法拉第的发现,深刻地揭示了一组极其美妙的物理对称性:运动的电产生磁,电磁感应原理用于很多设备和系统,包括:运动的磁产生电。
不仅磁棒与线圈的相对运动可以使线圈出现感应电流,一个线圈中的电流发生了变化,也可以使另一个线圈出现感应电流。
将线圈通过开关k与电源连接起来,在开关k合上或断开的过程中,线圈2就会出现感应电流. 如果将与线圈1连接的直流电源改成交变电源,即给线圈1提供交变电流,也引起线圈出现感应电流. 这同样是因为,线圈1的电流变化导致线圈2周围的磁场发生了变化。
高中物理 电磁感应定律
感应马达ab向右运动,磁通量增加;0角减小磁通量增加 综合两种一是电路闭合。情况,磁通量一定增加,必定产生电流
②、互感现象可以把能量由一个电路传到另一个电路,变压器就是利用互感现象制成的。其它几个是可能
如果还不明白可以继续文
物理电磁感应知识点总结
① 感应电流的磁场不一定与原磁场方向相反,只是在原磁场的磁通量增大时两者才相反;在磁通量减小时,两者是同样。电磁感应(Electromagnetic induction)现象是指放在变化磁通量中的导体,会产生电动势。下面是我为你整理的物理电磁感应知识点,一起来看看吧。
电场:E=F/q F=kQ1Q2/r2物理电磁感应知识点
三是右手定则。右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向为导线中感应电流的方向。1.电流的磁效应:
把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。
3.电磁感应发现的意义:
①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。
②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。
③电磁感应现象的发现,推动了经济和的发展,也体现了自然规律的和谐的对称美。
电和磁之间有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。
引起电流的原因概括为五类:
① 变化的电流。
② 变化的磁场。
③ 运动的恒定电流。
⑤ 在磁场中运动的导体。
5.磁通量:
闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。
6.对磁通量Φ的说明:
虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。
7.产生感应电流的条件:
二是磁通量变化。
8.楞次定律:
② “阻碍”并不是“阻止”如原磁通量要增加,感应电流的磁场只能“阻碍”其增加,而不能阻止其增加,即原磁通量还是要增加。
③定律本身并没有直接给定感应电流的方向,只是给定感应电流的磁场与原磁场间存在“阻碍”关系,要注意区分这两个磁场及其间的相互关系。
10.感应电动势:
定义:电动机转动时,线圈中也会产生感应电动势,这个电动势总要削弱电源电动势的作用,我们把这个电动势称为反电动势。
12.电磁感应规律的应用:
13.感生电场的应用:
电子感应加速器是应用感生电场对电子的作用来加速电子的一种装置,主要用于核反应研究。
14.互感和自感:
互感现象:两个线圈之间并没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象叫做互感现象。
15.对互感的三点理解:
①、互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。
③、在电力工程和电子电路中,互感现象有时会影响电路的正常工作,这时要求设法减小电路间的互感。
16.自感现象:
由于导体本身的电流发生变化而产生的电磁感应现象,叫做自感现象。
互感现象是一种常见的电磁感应现象,不仅仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何两个相互靠近的电路之间,由于是一种电磁感应现象,所以可以用安培定则、楞次定律去分析。
自感电流的方向可用楞次定律判断,当导体中电流增加时,自感电流的方向与原来的方向相反;当电流减小时,自感电流的方向与原来电流的方向相同,在分析自感现象时,除了要定性分析通电和断电自感现象外,还应半定量地分析电路中的电流变化,分析时主要抓住通过自感线圈的电流不能突变这一特点,其次是要注意电路结构在稳定和不稳定时的变化。
17.涡流:
把块状的金属放在变化的磁场中,或者让它在磁场中运动时金属块内将产生感应电流,这种电流在金属块内组成闭合回路,很像水的漩涡,因此叫做涡流。整块金属电阻很小,所以涡流常常很大。
18.涡流的热效应:
线圈接入反复变化的电流,某段时间内,若电流变大,则其磁场变强,根据麦克斯韦理论,变化的磁场激发出感生电场,导体可以看成是由许多闭合线圈组成的,在感生电场作用下,这些线圈中产生了感生电动势,从而产生涡旋状的感应电流,由于导体存在电阻,当电流在导体中流动时,就会产生电热,这就是涡流的热效应。
19.电磁阻尼和电磁驱动:
电磁阻尼:导体与磁场相对运动时,感应电流受到的安培力总是阻碍它们的相对运动,利用安培力阻碍导体与磁场间的相对运动就是电磁阻尼,磁电式仪表的指针能够很快停下,就是利用了电磁阻尼。
20.电磁驱动:
导体与磁场相对运动时,感应电流受到的安培力总是阻碍它们的相对运动,应该知道安培力阻碍磁场与导体的相对运动的方式是多种多样的,当磁场以某种方式运动时导体中的安培力为阻碍导体与磁场间的相对运动使导体跟着磁场动起来(跟着转动),这就是电磁驱动。
21.电磁驱动与磁悬浮列车:
磁悬浮列车是利用超导体产生抗磁作用使列车向上浮起而离开轨道,利用周期性地变换磁极方向产生运动的磁场,从而使车获得推动力,磁悬浮列车是目前世界上技术、已经投入使用阶段的新型列车,具有的优点有:
①速度高。
②安全、平衡、舒适。
③列车与轨道间冲击小,寿命长,节能。
④基本上无噪音和空气污染。
应用楞次定律判断感应电流方向的步骤:
①明确所研究的闭合回路。
②判断原磁场方向。
③判断闭合回路内原磁场的磁通量变化。
④依据楞次定律判断感应电流的磁场方向。
利用安培定则(右手螺旋定则)根据感应电流的磁场方向,判断出感应电流方向。
右手定则:
伸开右手,使拇指与其余四个手指垂直,并且都与手掌在一个平面内让磁感线从手心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
楞次定律与右手定则的关系:
注意适用范围:
②注意研究对象:楞次定律研究的是整个闭合电路,右手定则研究的是闭合电路的一部分即一段导体做切割磁感线运动。
电磁感应知识
一是电磁感应现象的规律。电磁感应研究的是其他形式能转化为电能的特点和规律,其核心是法拉第电磁感应定律和楞次定律。
楞次定律表述为:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。即要想获得感应电流(电能)必须克服感应电生的安培力做功,需外界做功,将其他形式的能转化为电能。法拉第电磁感应定律是反映外界做功能力的,磁通量的变化率越大,感应电动势越大,外界做功的能力也越大。
二是电路及力学知识。主要讨论电能在电路中传输、分配,并通过用电器转化成其他形式能的特点规律。在实际应用中常常用到电路的三个规律(欧姆定律、电阻定律和焦耳定律)和力学中的牛顿定律、动量定理、动量守恒定律、动能定理和能量守恒定律等概念。
电磁感应现象的原理及其应用
闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。物理是很贴近我们生活的一门学科,与我们的生活密切相关,电磁感应现象是物理学习中一个重要部分。下面为大家整理相关信息,供大家参考。
感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。电磁感应原理
闭合电路的部分导线在磁场中做切割磁感线运动时,导线中会产生感应电流.做实验时一般用电流计观察,指针的左右偏转表示不同的电流方向.如电路不是闭合电路,则导线两端有感应电压,无感应电流.
电磁感应的应用
涡电流,交流磁场使器皿底部产生感应涡电流,涡电流使锅底迅速发热,转化为热能; 磁滞损耗,交流磁场在不停的改变锅底金属的磁极方向时会造成能量损失而化成热能。主要的热力来源以涡流所产生的为主,磁滞损耗产生的热能少于10%,加热了的器皿便可加热食物。 电磁炉产生的电动势类型为感生电动势。
二 .无接触式充电电池
三.问题中的关键字眼——一定磁悬浮列车
在其悬浮系统上、推进系统上、导向系统上都要应用电磁感应定律。要想使沉重的列车悬浮起来,利用超导技术的帮助才能实现。超导磁悬浮列车的概念是由美国人提出,其基本原理如图1所示:在列车的底部安装超导磁体,在轨道的两旁则铺设有一系列的闭合铝环,当列车运行起来时,由于超导磁体产生的磁场相对于铝环有运动,根据电磁感应原理,在铝环内就会产生感应电流,而超导体和感应电流之间会有相互作用,产生向上的排斥力。当排斥力大于列车的自身重力时,列车就会悬浮起来(离地上的轨道平面约1cm左右)。
当然,当列车减速时,随着磁场的减小,相应的排斥力也变小,因此,悬浮列车也要配车轮,但它的车轮像飞机一样在高速运行时可以及时地收起来。当悬浮列车悬浮起来以后,由于没有了车轮和它的轨道之间的摩擦力,只需不大的功率(几千千瓦)就可以让列车达到500km/h的速度。(只需克服空气的阻力,而且噪音小,运行平稳)。与现有的列车相比,磁悬浮列车有高速、安全、噪音低和占地小等优点,
四、小结
不论是发动机,电磁炉还是无接触式充电电池都是利用电磁感应原理来实现其他形式的能量向电能的转化。 产生的电动势类型有动生电动势、感生电动势抑或两种电动势都存在,电流为交流的形式输出。 除了上述几种应用实例外,还有很多类似的发明,如汽车车速表,话筒等,在此不深入列举。
电磁感应定律
内容:电路中感应电动势的大小,法拉第电磁感应定律:跟穿过这一电路的磁通量的变化率成正比:用勾股定理~ OQ平方+OP平方=PQ平方 设OQ为X OP为Y 再用XY/2表示三角形面积的函数式…… 化简后就是关于Y四次方的函数 用t代去Y平方就是关于t的二次式 就能看出解了这是电磁感应定律,是麦克司韦通过试验得出的结论:线圈在磁场中相对运动,线圈的两端就产生感应电动势,其大小与线圈的匝数[n]成正比,与通过线圈的磁通量变化率[即单位时间内磁通量的变化]成正比.
高中物理电磁感应计算公式及答题思路
此外,电磁感应现象也被广泛应用于变压器、电动机、电抗器等电气设备中。这些设备的工作原理都与电磁感应现象密切相关。电磁感应现象是指因磁通量变化产生感应电动势的现象,例如,闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,产生的电流称为感应电流,产生的电动势称为感应电动势。
①楞次定律可应用于由磁通量变化引起感应电流的各种情况,右手定则只适用于一段导体在磁场中切割磁感线运动的情况,导体不动时不能用。物理电磁感应解题思路
套路一,滑杆速度的固定求法。滑杆在重力或重力分力和安培力的作用下一般都是做加速度减小的加速运动,当加速度为零时速度,即重力(分力)等于安培力时滑杆速度,mg或者mgsinθ=(BL)^2V。
套路二,电路中通过的电量。这个问题相对诸如力和热算是个冷门的问题了,整个高中阶段提到电量的公式就只有一个,那就是Q=It①,这里的I是指平均电流,平均电流怎么求呢,有两种方法,种就是求平均感应电动势,然后根据欧姆定律求平均电流,E(平均)=Δφ/Δt②,I(平均)=E(平均)/R总③,三式联立得Q=Δφ/R总。这里R总是电路中总电阻,Δφ(BS)是磁通量变化量,一般磁感应强度B是匀强定值,这里的S是滑杆实际划过的面积(导轨宽度Lx滑杆划过的距离)导轨宽度一般都会告诉,所以归根结底就是求滑杆划过的距离,这样咱们就把求电量转化成了求滑杆走过的距离了,至于距离怎么求,那就得根据滑杆的受力情况判断运动规律,比如滑杆做匀速运动或者匀变速运动之类的规律,然后再求运动的距离就容易多了吧。
套路三,求焦耳热,这个问题呢,本质上就是求安培力做功,一般都是负功,但是只要有安培力在,那就肯定有电流,有电流就肯定会产热,并且是整个电路中所有的电阻产生的焦耳热,所以安培力做功就等于电路中的总焦耳热。求焦耳热需要运用能量守恒定律或者动能定理,虽然定律不一样,但是性质一样。有外力主动拉滑杆运动的,外力做功就是总功,其他的一切能量均是由外力转化而来。没有外力还得滑杆受力分析,看看运动过程有什么力做功,安培力肯定有了,全部变成焦耳热,暂时设为Q,然后重力一般也会做点功(根据滑杆运动升高降低来判断重力做功正负),再就是动能了,需要查看题目中涉及到的所有物体的动能,只要是因为滑杆运动引起的其他物体的运动的动能都需要考虑。
套路四,对于电路中不产生感应电流的情况,大家只记住一点,那就是电路闭合回路磁通量不能发生变化,其实滑杆切割磁感线产生感应电流也是通过改变回路中磁通量大小才达到目的。磁通量不变,就需要列出B1S1=B2S2。
第二问,3mgh-mgh-Q=1/感生电动势的产生由感应电场使导体产生的电动势叫感生电动势,感生电动势在电路中的作用就是充当电源,其电路就是内电路,当它与外电路连接后就会对外电路供电变化的磁场在闭合导体所在空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说导体中产生了感应电动势,由此可见,感生电场就相当于电源内部的所谓的非静电力,对电荷产生力的作用。2mV^2。这里的V就是前问结论。
第三问,BoLh=BL(h+Vt+1/2at^2),因为电路中没有电流,滑杆不受安培力,这种情况下,就相当于磁场消失了,滑杆只是在滑轮另一侧物块的重力作用下向上运动。运用牛顿第二定律,3mg-mg=4ma。联立上几式,解出结果即可。
电磁感应现象是什么
电磁感应现象是什么的回答这道题考察的是磁场的变化如下:
电磁感应现象的原理可以解释为:当一个导线或导体处于变化的磁场中时,导线或导体中就会产生感应电流。这个感应电流的方向与磁场的变化方向相反,电磁感应现象的发现为电和磁的转化铺平了道路,工程及生活应用中很多发明都是根据电磁感应原理制成的,如我们熟知的发电机、电磁炉以及将来肯定会普及的无接触式充电电池,等等。这是因为根据楞次定律,感应电流总是试图抵抗磁场的变化。
电磁感应现象在日常生活和工业中有着广泛的应用。例如,发电机是利用电磁感应现象将机械能转化为电能的装置。当发电机工作时,转子在磁场中旋转,从而在定子中产生感应电流。这个感应电流就是发电机输出的电力。
总之,电磁感应现象是物理学中的一个重要概念,它在各种领域中都有着广泛的应用。对于工程师和技术人员来说,理解电磁感应现象的基本原理和应用是非常重要的。
楞4.高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量。麦克斯韦:电位移的散度等于电荷密度。如果您觉得正确或者采纳的话,麻烦给我好评哦,谢谢。次定律:
楞次定律是电磁感应现象中的一个基本规律,它指出感应电流的方向总是试图抵抗引起感应的磁场变化。这个定律可以用四个字来概括:“增反减同”,即当磁场增强时,感应电流的方向与磁场方向相反;当磁场减弱时,感应电流的方向与磁场方向相同。
什么是电磁感应定律、安培定律、基尔霍夫电压、电流定律??
磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。1820年,奥斯特发现了电流的磁效应,人们自然地联想到:电流可以产生磁场,磁场是否也能产生电流呢?从1822年到1831年,英国物理学家法拉第经过了近十年的不懈努力,终于在人类历史上个发现了电磁感应现象。它的发现,是电磁学领域中最伟大的成就之一。它不仅为揭示电与磁之间的相互联系和转化奠定实验基础,促进了电磁场理论的形成和发展,而且为人类获取巨大而廉价的电能开辟了道路,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动生产力和拓展知识:科学技术的发展发挥了重要的作用。
电磁感应公式有哪些