高一数学知识点二次函数
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。I.定义与定义表达式
二次函数知识点 二次函数知识点总结图
二次函数知识点 二次函数知识点总结图
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,P在y轴上;当=b^2-4ac=0时,P在x轴上。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab0),对称轴在y轴左;
当a与b异号时(即ab0),对3.二次项系数a决定抛物线的开口方向和大小。称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
=b^2-4ac0时,抛物线与x轴有2个交点。
=b^2-4ac=0时,抛物线与x轴有1个交点。
=b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-bb^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
顶点坐标
对称轴
y=ax^2
(0,0)
x=0
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
当h0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h0时,则向左平行移动|h|个单位得到.
当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线y=ax^2+bx+c(a0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a0),若a0,当x-b/2a时,y随x的增大而减小;当x-b/2a时,y随x的增大而增大.若a0,当x-b/2a时,y随x的增大而增大;当x-b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的`图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a0)的两根.这两点间的距离AB=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△0.图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y当a0时,图象落在x轴的下方,x为任何实数时,都有y0.
5.抛物线y=ax^2+bx+c的最值:如果a0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
初三二次函数知识点总结
当y=0时,二次函数为关于x的一元二次方程(以下称方程),二次函数是出只能怪数学比较重点的一部分,下面我为大家总结了初三二次函数知识点,仅供大家参考。
二次函数的定义
一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.
注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;
(3)当b=c=0时,二次函数y=ax2是最简单的二次函数;
(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.
二次函数解析式的几种形式
(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).
(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).
说明:(1)任何一个 二次函数 通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点
二次函数y=ax2+c的图象与性质
(1)抛物线y=ax2+c的形状由a决定,位置由c决定.
当a>0时,图象的开口向上,有点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.
当a二次函数y=ax2的图象和性质<0时,图象的开口向下,有点(即顶点),当x=0时,y值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.
(3)抛物线y=ax2+c与y=ax2的关系.
抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.
以上就是我为大家总结的初三 数学 二次函数知识点,仅供参考,希望对大家有所帮助。
二次函数中b<2a是属于什么知识点?
当△=0.图象与x轴只有一个交点;二次函数Y=ax^2+bx+c中,
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。抛物线的对称轴X=-b/(2a),
当对称轴在X=-1的右侧时,
-b/2a>-1,
在a>0有情况下:
b
二次函数的知识点
对于二次函数y=ax2+bx+c,其顶点坐标为[(-b/2a),(4ac-b2)/4a],即(1)考查二次函数的定义;
(2)确定二次函数解析式;
(3)二次函数的平移;
(4)考查二次函数与一元二次方程的关系;
(5)考查二次函数的各项系数与图象的位置的关系。
重点内容:
一般地,自变量x和因变量y之间存在如下关系:
y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。
重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
二次函数表达式的右边通常为二次。
x是自变量,y是x的二次函数 二次函数的三种表达式编辑本段①一般式:y=ax2+bx+c(a,b,c为常数,a≠0)
②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)2+k
③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1 2)(x-x22)
以上3种形式可进行如下转化:
①一般式和顶点式的关系
k=(4ac-b2)/4a
②一般式和交点式的关系
可以看出,二次函数的图像是一条永无止境的抛物线。 抛物线的性质编辑本段1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ([-b/2a ,(4ac-b2)/4a ]
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左侧; 因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,若要b/2a大于0,则a、b要同号
当a与b异号时(即ab<0),对称轴在y轴右侧。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,若要b/2a小于0,则a、b要异号
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
Δ= b2-4ac>0时,抛物线与x轴有2个交点。
Δ= b2-4ac=0时,抛物线与x轴有1个交点。
Δ= b2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax2+c(a≠0)
7.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a 小于0的情况请读者自行推断)①[(4ac-b2)/4a,+∞);②[t,+∞)
奇偶性:偶函数
解析式:
①y=ax2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b2)/4a);
⑷Δ=b2-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)2+t[配方式]
此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b2)/4a; 二次函数与一元二次方程编辑本段 特别地,二次函数(以下称函数)y=ax2+bx+c,
即ax2+bx+c=0
函数与x轴交点的横坐标即为此时,函数图像与x轴有无交点即方程有无实数根。方程的根。
1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2 +k,y=ax2+bx+c(各式中,a≠0)的图象
《二次函数》全部知识点和例题
(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.去百度文库里搜搜,都有的
(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;是不v新客户BVIKCXGVQDBLICQVEDCFIQFV、 NBXJ多大曾经的vc看我长江,我才、就, V爱的、看爱吃、 爱慕你的错卡角度看擦调查V刊哈vc的 、吧吧客户的保持健康
二次函数的知识点,要具体!!!
二次函数的知识点
1、二次函数的解析式:(1)一般式: y=ax2+bx+c(a≠0),
(2)顶点式:y=a(x+m)2+k(a≠0),此时二次函数的顶点坐标为(-m,k)
(3)分解式:y=a(x-x1)(x-x2)其中x1、x2是二次函数与x轴的两个交点的横坐标,此时二次函数的对称轴为直线x= ;
2、二次函数的图象与性质:
(1) 开口方向:当a>0时,函数开口方向向上;当a<0时,函数开口方向向下;
(2) 对称轴:直线x=-b/2a;
(3) 顶点坐标:( , );
(4) 增减性:当a>0时,在对称轴左侧,y随着x的增大而减少;在对称轴右侧,y随着x的增大而增大;当a<0时,在对称轴左侧,y随着x的增大而增大;在对称轴右侧,y随着x的增大而减少;
(5) 或最小值:当a>0时,函数有最小值,并且当x= ,y最小值= ;当a<0时,函数有值,并且当x= ,y值= ;
(6) 与X轴的交点个数:当Δ=b2-4ac>0时,函数与X轴有两个不同的交点;Δ=b2-4ac <0时,函数与X轴没有交点;Δ=b2-4ac =0时;函数与X轴只有一个交点;
(7) 函数值的正、负性:如图1:当x<x1或x>x2时,y > 0;
当x1<x<x2时,y<0;
如图2:当x1<x<x2时,y>0;
当x<x1或x>x2时,y < 0;
(8) 二次函数y=ax2+bx+c(a≠0)与x轴的交点坐标为A(x1,0),B(x2,0) ,则二次函数与X轴的交点之间的距离AB= =
(9) 二次函数y=ax2+bx+c(a≠0) 中a、b、c的符号判别:(1)a的符号判别由开口方向确定:当开口向上时,a>0;当开口向下时,a<0;(2)c的符号判别由与Y轴的交点来确定:若交点在X轴的上方,则c>0;若交点在X轴的下方,则C<0;(3)b的符号由对称轴来确定:对称轴在Y轴的左侧,则a、b同号;若对称轴在Y 轴的右侧,则a、b异号;
(10) (1)二次函数y=ax2+bx+c(a≠0)与X轴只有一个交点或二次函数的顶点在X轴上,则Δ=b2-4ac=0;
(2)二次函数y=ax2+bx+c(a≠0)的顶点在Y轴上或二次函数的图象关于Y轴对称,则b=0;
(3)二次函数y=ax2+bx+c(a≠0)经过原点,则c=0;
3、二次函数的解析式的求法:
(1) 已知关于x的二次函数图象的对称轴是直线x=1,图象交Y轴于点(0,2),且过点(-1,0)求这个二次函数的解析式;
(2) 已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式;
(3) 已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式;
(4) 已知抛物线与X轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式;
(5) 已知抛物线通过三点(1,0),(0,-2),(2,3)求此抛物线的解析式;
(6) 抛物线的顶点坐标是(6,-12),且与X轴的一个交点的横坐标是8,求此抛物线的解析式;
(7) 抛物线经过点(4,-3),且当x=3时,y值=4,求此抛物线的解析式;
一般式Y=ax2+bx+c(a不等于0)
a的作用,决定二次函数开口方向和开口大小
b的作用,和a一起决定二次函数的对称|a|越大,则抛物线的开口越小。轴
c的作用,决定截距
对称轴x=-b/2a
顶点式:y=a(x周期性:无-k)2+h
两根式:y=a(x-x1)(x-x2)
初三数学二次函数常见知识点整理
想要学好数学知识点是很重要的,下面我就大家整理一下初三数学二次函数常见知识点整理,仅供参考。
二次函数定义
定义:一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,),称y为x的二次函数。
二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0);
顶点式:y=a(x-h)^2+k(抛物线的顶点P(h,k));
二次函数的图像与性质
1 二次函数 的图像是一条抛物线。
2抛物线是轴对称图形。对称轴为直线x=-b/2a。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。
3二次项系数a决定抛物线的开口方向。
当a>0时,抛物线向上开口;
当a<0时,抛物线向下开口。
4一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
5抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点;
Δ=b^2-4ac=0时,抛物线与x轴有1个交点;
Δ=b^2-4y=a(x-h)^2ac<0时,抛物线与x轴没有交点。
二次函数抛物线的性质
1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。
对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置(h,0)。
当a与b同号时(即ab>0),对称轴在y轴左;
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
以上就是我为大家整理的初三数学二次函数常见知识点整理。
初三学期二次函数相关知识点 越详细越好 不怕啰嗦 就怕你没的说
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)二次函数的学习主要是学会画函数图像,很多问题函数图像一画就解决了一半。
h=-b/2a=(x1 +x2)/2函数图像关键信息:开口方向、对称轴、与x、y轴交点还有就是函数最值。
这几条信息我认为是二次函数的全部。
拿到一个二次函数先根据以上信息画出大概函数图像,基本上可以对付所有的选择题,
至于证明题、求最值什么的,有了图像一目了然。
所以说,二次函数的图像是学习二次函数的关键。一定要掌握二次函数图像的画法。
我这有PPT的可以吗?
初中二次函数知识点总结 看一遍就能掌握!
(3)x=13时,y取得值,二次函数是初中比较重点的一部分,下面我为大家总结了初中二次函数知识点,仅供大家参考。
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b2/4a}相反不变二次函数的定义
一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.
注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;
(3)当b=c=0时,二次函数y=ax2是最简单的二次函数;
(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.
(1)函数y=ax2的图象是一条关于y轴对称的曲线,这条曲线叫抛物线.实际上所有 二次函数 的图象都是抛物线.
二次函数y=ax2的图象是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0).
①当a>0时,抛物线y=ax2的开口向上,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升,顶点是抛物线上位置的点,也就是说,当a>0时,函数y=ax2具有这样的性质:当x<0时,函数y随x的增大而减小;当x>0时,函数y随x的增大而增大;当x=0时,函数y=ax2取最小值,最小值y=0;
②当a<0时,抛物线y=ax2的开口向下,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点是抛物线上位置的点.也就是说,当a<0时,函数y=ax2具有这样的性质:当x<0时,函数y随x的增大而增大;当x>0时,函数y随x的增大而减小;当x=0时,函数y=ax2取值,值y=0;
③当|a|越大时,抛物线的开口越小,当|a|越小时,抛物线的开口越大.
(2)二次函数y=ax2的表达式的确定
因为二次函数y=ax2中只含有一个需待定的系数a,所以只需给出x与y的一对对应值即可求出a的值.
抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。
以上就是我为大家总结的初中 数学 二次函数知识点,仅供参考,希望对大家有所帮助。
初中数学知识点:二次函数顶点坐标公式
学好 数学 首先要学好知识点,下面我就大家整理一下初中数学二次函数顶点坐标公式 ,仅供参考。
二次函数基本
一般地,我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的次数是2。
二次函数顶点式公式
(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)
(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).
(3)交点式(与x轴):y=a(x-x1)(x-x2)
(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
说明:
(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时当-b/2a=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点.
(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).
二次函当a与b异号时(即ab<0),对称轴在y轴右。数顶点坐标公式推导
顶点式:y=a(x-h)^2+k
[抛物线的顶点P(h,k)]
对于 二次函数 y=ax^2+bx+c
其顶点坐标为 (-b/2a,(4ac-b^2)/4a)
推导:
y=ax^2+bx+c y=a(x^2+bx/a+c/a) y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2) y=a(x+b/2a)^2+c-b^2/4a y=a(x+b/2a)^2+(4ac-b^2)/4a
对称轴x=-b/2a
顶点坐标(-b/2a,(4ac-b^2)/4a)