Q-TOF中TOF的作用分别是什么
3.2E-MAC能谱分析通常是通过能谱仪来实现的。能谱仪是一种用来对材料微区成分元素种类与含量分析的仪器,常常与扫描电子显微镜和透射电子显微镜等设备配合使用。能谱仪的工作原理是将材料中产生的电子能谱进行采集和处理,然后通过分析能谱图谱线的分布特征来确定材料的组成和化学状态 。快速煤质分析仪TOF是质量分析器。MALDI-TOF是一套系统,蛋白分析用的多,优点是质量范围宽,缺点是灵敏度低,重现性。Q-TOF是四级杆串联TOF,都是质量分析器,结合使用可以做蛋白的二级分析。一金属显微组织利用光金相显微镜或电显微镜等观察、鉴别析金属材料微观组织研究新材料、新工艺探讨组织与性能间关系提供依据 金属材料显微组织(金相组织、硬化层深度、晶粒、碳化物均匀度、夹杂物)析般做定性用。
化学成分分析仪器 化学成分分析有哪些检测技术
化学成分分析仪器 化学成分分析有哪些检测技术
TOF的原理是离子在电场作用下加速飞过飞行管道,根据到达检测器的飞行时间不同而被检测即测定离子的质荷比(M/Z)与离子的飞行时间成正比 ,检测离子。
尿液干化学分析仪的检测原理
式扫描量热仪:测量的是与材料内部热转变相关的温度、热流的关系。3.通过应用5E-MAC快速煤质分析仪进行煤的工业分析,其结果是具有很高的可信度的。原GB212-法用电子天平称取一个试样1。0000±0。0002g大约需3min左右,而用5E-MAC快速煤质分析仪电子天平只需要几秒钟就可完成一个试样的称量,而且用5E-MAC快速煤质分析仪还能够进行批量分析,这不仅加快了分析速度,提高了分析质量,也减少了人为因素对分析结果的影响。故用5E-MA快速煤质分析仪进行煤的工业分析具有很好的应用前景。3快速分析仪【】:A
【煤质分析及分析仪器】 常用的化学分析仪器
GB/T 20123-2006 钢铁 总碳硫含量的测定 高频感应炉燃烧后吸收法(常规方法)【摘 要】能源的日渐匮乏对经济的发展起到了很大程度的制约,这就要求在煤炭利用方面愈加合理。本文主要介绍了煤样采制过程及目前国内先进的分析仪器,并对分析方法也做了简单介绍。对煤炭的加工和利用有一定借鉴意义。
发射光谱法:依据物质被激发发光而形成的光谱来分析其化学成分。使用不同的激发源而有不同名称的光谱法。如用高频电感耦合等离子体(ICP)作激发源,称高频电感耦合等离子体发射光谱法;如用激光作光源,称激光探针显微分析。1、煤样的制备
由于煤炭是一种化学组成和粒度组成很不均匀,要从大量的煤样中取出少量的有代表性的样品,就必须按照一定的作程序对煤样进行加工。在制样的过程中,破碎到一定粒度进行缩分之后,留下一部分,弃掉一部分,这种缩分必须严格按照规定作,使保留和弃去两部分样品质量接近,如果有很大的异,即使下一步分析化验再准确,其结果也毫无意义。由此来看,制样是关系到分析试验结果是否准确的最重要环节。
2、煤的工业分析
2.1灰份的测定
2.2挥发成品分析(化学分析仪器)是指在经过加工的成品钢材(包括钢坯)上采取试样,然后对其进行的化学分析.成品分析主要用于验证化学成分,又称验证分析.由于钢液在结晶过程中产生元素的不均匀分布(偏析),成品分析的值有时与熔炼分析的值不同.份的测定
煤的挥发份是指煤的气体。它主要由碳氢化合物组成,工业分析中测定的挥发份不是煤中原来固有的挥发物质,而是煤在严格规定下加热时的热分解产物,改变任何试验条件都会给测定结果带来不同程度的影响。
2.3全硫的测定
标准中规定测硫有重量法(艾氏卡法)、高温燃烧中和法和库仑滴定法。我们目前采用的是国标库仑滴定法,该方法作简便、快捷、准确。
煤在炼焦加热过程中,煤粒表面形成一种气态、液态、固态比例不稳定即我们所说的胶质体。各煤粒之间的结合就通过胶质体粘结在一起,随着温度的提高,胶质体固化,就形成了焦炭。那么胶质层厚度Y值就是指煤在加热过程中,形成和消失胶质体过程中瞬间所产生胶质体的值。它只是数量的概念,没有质量的概念。有时Y值相同,质量却不同,也就是说胶质体产生的多,粘结性不一定好。它只是评价炼焦煤产生胶质体的数量。
胶质层指数的测定过程反映了工业焦炉炼焦的全过程。Y值直接反映了煤的胶质体特性和数量。是煤结焦性好坏的一个标志。它被列为煤分类的工艺性指标。
2.5粘结指数
炼焦用煤中也有不产生或产生少量胶质体的组分存在,我们称其为惰性物质,这些物质通过其他煤粒表面产生的胶质体结合在一起,形成焦炭。粘结指数G值就是评价胶质体粘结惰性物质能力的指标。其测定就是以一定质量的炼焦煤试样和专用的无烟煤(没有粘结性)混合均匀,在规定条件下加热成焦,所得焦炭在一定规格的转鼓内进行强度检验,以焦块的耐磨强度表示试验煤样的粘结能力。粘结指数是煤分类中判别煤的一个重要指标,它的优点是方便、快捷、煤样用量少[2]。
具有一般煤质分析能力的煤质化验室需购置的仪器主要有:测试煤中热值的量热仪;测试煤的水分、灰分、挥发分和固定碳4项指标的工业分析仪;测试煤中元素含量的测硫仪、碳氢测试仪;还有关系到锅炉燃煤安全的煤灰熔融性测试仪等。
使用中子技术可以减少费用和测量时间,而这两项指标对煤炭工业来说十分重要。其他的分析技术包括X射线荧光(XRF)和瞬发γ中子活化分析对于分析C和O等元素不利。脉冲快热中子活化分析可直接测量物质中的元素组成,非常适合分析不同的样品,利用脉冲中子束可以测量低原子序数的C和O元素。脉冲快热中子分析的基础是脉冲中子发生器,脉冲D-T中子发生器可以引发多种核反应。由这些反应生成的γ射线可被适合的探测器测到(常用的是锗酸铋晶体)。在中子脉冲期间,γ射线谱主要包括(n,n′γ),(n,pγ),(n,γ)反应产生的γ射线。在中子间歇期间,一些快中子仍然与物质中的轻元素碰撞而损失能量。当中子能量低于1eV时,中子被一些元素如H,N和Fe通过(n,γ)反应被俘获。由这些反应生成的γ射线可以被存储在多道分析器(MCA)的不同存储区。利用计算机可计算出的结果。
结 论
煤炭是的重要能源,即使在石油需求量不断增长的今天,做为一次能源的煤炭仍占有相当重要地位。为了更充分有效地利用煤炭资源,在煤炭资源勘探阶段,就开始了一系列的煤炭质量的检验,以便规划开发。煤炭在开采过程中也要对煤炭质量进行检验和监测。煤炭在销售中还要通过煤质分析对煤炭质量作出评估,以确定商品煤的售价。重要的是煤炭做为重要的煤化工原料被利用时,煤质化验分析就更为必要。总之,无论是煤炭的开发、利用或是精加工、深加工都离不开煤质分析。
参考文献
[3]张棋,刘翠华.煤工业分析方法的改进,燃料与化工,1994,25(4): 169~170.
分析和表在材料微观结构的基本设备有哪些?
【】煤质分析1.光谱仪分析,属于仪拉曼光谱仪(Raman):采用共焦光路设计以获得更高分辨率,可对样品表面进行um级的微区检测,也可用此进行显微影像测量。应用范围:石油、食品、农牧产品、、水质、矿石等器自动检测,比较方便,快捷!;选煤厂;分析仪器能谱分析是测什么的
3.1一般分析仪器能谱分析是一种对材料进行成分分析的方法,通过对材料中产生的电子能谱进行分析来确定材料的组成和化学状态。
能谱分析的方法包括多种,如俄歇电子能谱、光电子能谱、X射线光电子能谱和紫外光电子能谱等。能谱分析广泛应用于材料科学、生物医学、环境科学等领域,可以用于表面成分分析、薄膜厚度测量、化学键状态分析等多种应用2014年人身损害伤残鉴定标准及附则附则:轻度智能减退:IQ55~69之间;无明显语言障碍,对周围环境有较好的辨别能力,能比较恰当的与人交往;生活能自理…… 。
X射线光电子能谱是能谱分析中的一种方法,它是通过对样品表面产生的光电子能谱进行分析来确定样品的组成和化学状态的。在XPS谱图上,通常能够明显出现的是自旋-轨道偶合能级分裂谱线,如p轨道的p3/2 p1/2,d轨道的 d3/2 d5/2金属显微组织利用光金相显微镜或电显微镜等观察、鉴别析金属材料微观组织研究新材料、新工艺探讨组织与性能间关系提供依据 金属材料显微组织(金相组织、硬化层深度、晶粒、碳化物均匀度、夹杂物)析和 f 轨道的 f5/2 f7/2,其能量分裂距离依元素不同而不同 。
拉曼光谱分析仪检测什么
GB/T 7764-2001 橡胶鉴定光谱法 GB/T 6040-2002 光谱分析方法通则拉曼光谱分析仪检测物质的拉曼散射光谱,即通过检测物质在拉曼频率处的光谱特征来确定其结构和成分。
拉曼光谱仪是一种先进的分析仪器,被广泛应用于多个领域。其主要功能是通过检测物质在拉曼频率处的光谱特征来确定其结构和成分。通过分析物质的拉曼散射光谱,我们可以获得有关物质化学成分、结构组成、分子量、相对分子质量、沸点、密度、折射率、粒度等性质的信息。
拉曼光谱仪的工作原理是基于拉曼散射现象。当物质受到激发光的照射时,部分光子被物质分子所吸收并重新辐射出去。这种重新辐射的光会在频率上发生变化,产生了拉曼散射光。拉曼光谱仪会收集并分析这些散射光的频率和强度,从而获得物质的拉曼光谱。
拉曼光谱分析2、成品分析仪的应用领域
3、生物医学:拉曼光谱分析仪在生物医学领域有广泛的应用。它可以用于生物样品的分子鉴别和成分分析,例如检测生物分子的浓度、鉴别不同类型的细胞和组织等。此外,拉曼光谱还可以用于物研究和生物体内物代谢的研究。
以上内容参考:3、煤质分析仪器与现代化分析方法
金属材料化学成分用什么来分析
扫描电子显微镜(SEM)是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。 扫描电子显微镜在新型陶瓷材料显微分析中的应用 1显微结构的分析 在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其的性能。扫描电子显微镜可以清楚地反映和记录这些微观特征,是观察分析样品微观结构方便、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析。扫描电子显微镜拍出的图像真实、清晰,并富有立体感,在新型陶瓷材料的三维显微组织形态的观察研究方面获得了广泛地应用。 由于扫描电子显微镜可用多种物理信号对样品进行综合分析,并具有可以直接观察较大试样、放大倍数范围宽和景深大等特点,当陶瓷材料处于不同的外部条件和化学环境时,扫描电子显微镜在其微观结构分析研究方面同样显示出极大的优势。主要表现为: ⑴力学加载下的微观动态 (裂纹扩展)研究 ;⑵加热条件下的晶体合成、气化、聚合反应等研究 ;⑶晶体生长机理、生长台阶、缺陷与位错的研究; ⑷成分的非均匀性、壳芯结构、包裹结构的研究; ⑸晶粒相成分在化学环境下异性的研究等。 2纳米尺寸的研究 纳米材料是纳米科学技术最基本的组成部分,可以用物理、化学及生物学的方法制备出只有几个纳米的“颗粒 ”。纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,纳米陶瓷在一定的程度上也可增加韧性、改善脆性等,新型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。纳米材料的一切独特性主要源于它的纳米尺寸,因此必须首先确切地知道其尺寸,否则对纳米材料的研究及应用便失去了基础。纵观当今国内外的研究状况和成果,该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜、原子力显微镜等技术,但高分辨率的扫描电子显微镜在纳米级别材料的形貌观察和尺寸检测方面因具有简便、可作性强的优势被大量采用。另外如果将扫描电子显微镜与扫描隧道显微镜结合起来,还可使普通的扫描电子显微镜升级改造为超高分辨率的扫描电子显微镜。图 2所示是纳米钛酸钡陶瓷的扫描电镜照片,晶粒尺寸平均为 20nm。 3铁电畴的观测 压电陶瓷由于具有较大的力电功能转换率及良好的性能可调控性等特点在多层陶瓷驱动器、微位移器、换能器以及机敏材料与器件等领域获得了广泛的应用。随着现代技术的发展,铁电和压电陶瓷材料与器件正向小型化、集成化、多功能化、智能化、高性能和复合结构发展,并在新型陶瓷材料的开发和研究中发挥重要作用。铁电畴 (简称电畴)是其物理基础,电畴的结构及畴变规律直接决定了铁电体物理性质和应用方向。电子显微术是观测电畴的主要方法,其优点在于分辨率高,可直接观察电畴和畴壁的显微结构及相变的动态原位观察 (电畴壁的迁移)。 扫描电子显微镜观测电畴是通过对样品表面预先进行化学腐蚀来实现的,由于不同极性的畴被腐蚀的程度不一样,利用腐蚀剂可在铁电体表面形成凹凸不平的区域从而可在显微镜中进行观察。因此,可以将样品表面预先进行化学腐蚀后,利用扫描电子显微镜图像中的黑白衬度来判断不同取向的电畴结构。对不同的铁电晶体选择合适的腐蚀剂种类、浓度、腐蚀时间和温度都能显示良好的畴图样。图 3是扫描电子显微镜观察到的 PLZT材料的 90°电畴。扫描电子显微镜 与其他设备的组合以实现多种分析功能。 在实际分析工作中,往往在获得形貌放大像后,希望能在同一台仪器上进行原位化学成分或晶体结构分析,提供包括形貌、成分、晶体结构或位向在内的丰富资料,以便能够更全面、客观地进行判断分析。为了适应不同分析目的的要求,在扫描电子显微镜上相继安装了许多附件,实现了一机多用,成为一种快速、直观、综合性分析仪器。把扫描电子显微镜应用范围扩大到各种显微或微区分析方面,充分显示了扫描电镜的多种性能及广泛的应用前景。 目前扫描电子显微镜的最主要组合分析功能有:X射线显微分析系统(即能谱仪,EDS),主要用于元素的定性和定量分析,并可分析样品微区的化学成分等信息;电子背散射系统 (即结晶学分析系统),主要用于晶体和矿物的研究。随着现代技术的发展,其他一些扫描电子显微镜组合分析功能也相继出现,例如显微热台和冷台系统,主要用于观察和分析材料在加热和冷冻过程中微观结构上的变化;拉伸台系统,主要用于观察和分析材料在受力过程中所发生的微观结构变化。扫描电子显微镜与其他设备组合而具有的新型分析功能为新材料、新工艺的探索和研究起到重要作用。鉴定金属由哪些元素所组成的试验方法称定性分析。测定各组分间量的关系(通常以百分比表示)的试验方法称定量分析。若基本上采用化学方法达到分析目的,称为化学分析。若主要采用化学和物理方法(特别是的测定阶段常应用物理方法),一般采用仪器来获得分析结果,称为仪器分析。化学分析根据各种元素及其化合物的独特化学性质,利用化学反应,对金属材料进行定性或定量分析。定量化学分析按的测定方法可分为重量分析法、滴定分析法和气体容积法等三种。重量分析法是使被测元素转化为一定的化合物或单质与试样中的其他组分分离,用天平称重方法测定该元素的含量。滴定分析法是将已知准确浓度的标准溶液与被测元素进行完全化学反应,根据所耗用标准溶液的体积(用滴定管测量)和浓度计算被测元素的含量。气体容积法是用量气管测量待测气体(或将待测元素转化成气体形式)被吸收(或发生)的容积,来计算待测元素的含量。由于化学分析具有适用范围广和易于推广的特点,所以至今仍为很多标准分析方法所采用。仪器分析根据被测金属成分中的元素或其化合物的某些物理性质或物理与化学性质之间的相互关系,应用仪器对金属材料进行定性或定量分析。有些仪器分析仍不可避免地需要通过一定的化学预处理和必要的化学反应来完成。金属化学分析常用的仪器分析法有光学分析法和电化学分析法两种。光学分析法是根据物质与电磁波(包括从γ射线至电波的整个波谱范围)的相互关系,或者利用物质的光学性质来进行分析的方法。最常用的有吸光光度法(、可见和紫外吸收光谱)、原子吸收光谱法、原子荧光光谱法、发射光谱法(看谱分析)、浊度法、火焰光度法、X射线衍射法、X射线荧光分1、熔炼分析析法以及放射化学分析法等。电化学分析法是根据被测金属中元素或其化合物的浓度与电位、电流、电导、电容或电量的关系来进行分析的方法。主要包括电位法、电解法、电流法、极谱法、库仑(电量)法、电导法以及离子选择电极法等。仪器分析的特点是分析速度快、灵敏度高,易于实现计算机控制和自动化作,可节省人力,减轻劳动强度和减少环境污染。但试验装工通常较庞大复杂,价格昂贵,有些大型、复杂、精密的仪器只适用于大批量和成分较复杂的试样分析工作。参考:
如在气相色谐分析中样品的进样量只要几微升。仪器分析和化学分析有何优势?
2、材料科学:在材料科学领域,拉曼光谱分析仪常用于3.4脉冲中子煤质分析仪材料的表征和研究。通过测量材料的拉曼光谱,可以获取材料的晶格结构、晶粒尺寸、杂质含量等信息,对材料的性质和性能进行分析和评估。仪器分析和常规的化学分析相比,优势在于(1)灵敏度高
与化学分析相比,仪器分析灵敏度高,相对检出限一般在10-8或10-9数量级,甚至可达如气相色谱法的检出限可达10-12~10-8,原子吸收光谱法的检出限可达10-9。因而仪器分析方法适用于微量及痕量成分的分析。
自动化程度比较高在分析过程中,绝大多数分析仪器都是将被测组分的浓度变化或物理性质变化转变成某种电性能(如电阻、电导、电位、电容、电流等),从而易与计算机连接,实现自动化和智能化。因此仪器分析具有分析速度快,作简便的特点。
(3)试样用量少,适合于微量和超微量分析
(4)选择性高,成用范围广泛
由于仪器本身有较高的分辨能力,容易方便地选择条件进行测试,还可以利用其他辅助技术煤在1150℃的管式炉中燃烧,煤中各种形态的硫均被氧化和分解为和,生成与水化合生成,以电生碘、电生溴来氧化滴定,根据电生碘或电生溴所消耗的电量,计算煤中全硫的含量[1]。如掩蔽和分离方法等,大大提高其选择性。
对新材料做成分鉴定,用什么测试分析方法
快速分析仪的检测原理为热重分析法,将远加热设备与称量用的电子天平结合在一起在特定的气氛条件、规定的温度(可设定)、规定的时间(可设定)内对受热过程中的试样予以称重,以此计算出试样的水分、灰分等工业分析指标。相对于烘箱、马弗炉测定水分灰分的方法,该仪器具备很多优点。自动称量,减少了人工称量产生的误。利用0号坩埚校正省去了试样冷却时间,缩短了试验时间。试验过程中免除了人工干预。试验过程中消除了安全隐患(人员高温烫伤)。自动计算、打印试验结果,减少了人工计算产生的误,降低了劳动强度,提高了工作效率。试验数据保存在电脑中,便于查询和统计。自动化程度高,试验时只要将样品放入坩埚内,测定结果将自动报出[3]。韦氏智力量表的得分分布是以100为平均值、15为标准的正态分布,得(2)分析速度快分在70~130分为正常,得分高于130分为智力超常,低于70分为智力缺陷。根据你给出的数字,言语与全量表略低于70,作高于70,分析:伤者应当是十级伤残
符合该标准2.10.1边缘智能状态。确定不一样的样品成分含量也是不一样的--青岛科标分析中心可以帮您是十级残疾
橡胶材料如何成分分析?
煤的灰份不是煤中的固有成分,而是煤在规定条件下完全燃烧的残留物,测定灰份的方法有两种,一种是缓慢灰化法(慢速法),另一种是例常分析的快速法。橡胶材料的胶种类型可以按照GB/T[2]冯安祖.炼焦化工卷.冶金百科全书[M]. 7764-2017光谱法鉴定,胶种含量及其他成分含量则需要通过XRD、TG、HPLC、GC-MS等仪器分析手段加以完善。具体咨询一下程诚检测中心吧,朋友在他家做的。
2.4胶质层测定