高考数学选择题多少分 高考数学分值分布
你想知道高考数学试卷选择一共占多少分吗?你是否明白高考数学的分值分布情况?下面我就为大家详细介绍下,具体内容如下。
高考数学选择题多少分?分值分布有哪些?
高考数学选择题多少分?分值分布有哪些?
高考数学选择题多少分?分值分布有哪些?
高考数学选择题多少分 在高考数学的试卷中,选择题一共8小题,每小题5分一共40分。填空一共5个,每题6分,一共30分。选择填空总共70分。具体是这样在高考数学试卷上分布的:
一、选择题 1~8 每小题5分 共40分
二、填空题9~14 每小题6分 共30分
三、解答题
15.三角函数或者解三角形 13分
16.概率题 13分
17.立体几何14分 (16 17位置可能互换)
18.导数题 13分
19.解析几何体 椭圆 双曲线 抛物线 之类的 14分
20.定义新运算 推理与证明 13分
共计150分
高考数学分值分布 1.与简易逻辑。分值在5~10分左右(一道或两道选择题),高考数学考查的重点是抽象思维能力,主要考查与的运算关系,将加强对的计算与化简的考查,并有可能从有限向无限发展。简易逻辑多为考查“充分与必要条件”及命题真伪的判别。
2.函数与导数,函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。在高考数学中,至少三个小题一个大题,分值在30分左右。以指数函数、对数函数、生成性函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数问题常常是选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。函数与导数的结合是高考的热点题型,文科以三次(或四次)函数为命题载体,理科以生成性函数(对数函数、指数函数及分式函数)为命题载体,以切线问题、极值最值问题、单调性问题、恒成立问题为设置条件,与不等式、数列综合成题,是解答题试题的主要特点。
3.不等式; 高考数学一般不会单独命题,会在其他题型中“隐蔽”出现,分值一般在10左右。不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。选择题和填空题主要考查不等式性质、解法及均值不等式。解答题会与其它知识的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n 项和的有界性证明、由函数的导数确定最值型的不等式证明等。
4.数列:数列是高中数学的重要内容,又是初等数学与高等数学的重要衔接点,所以在历年的高考数学解答题中都占有重要的地位.题量一般是一个小题一个大题,有时还有一个与其它知识的综合题。分值在20分左右,文科以应用等、等比数列的概念、性质求通项公式、前n 项和为主;理科以应用Sn 或an 之间的递推关系求通项、求和、证明有关性质为主。数列是特殊的函数,而不等式是深刻认识函数与数列的工具,三者综合的求解题与求证题是对基础知识和基础能力的双重检验,是高考命题的新热点。
5.三角函数:分值在20分左右(两小一大)。三角函数高考数学题大致为以下几类:一是三角函数的恒等变形,即应用同角变换和诱导公式,两角和公式,二倍角公式,求三角函数值及化简、证明等问题;二是三角函数的图象和性质,即图像的平移、伸缩变换与对称变换、画图与视图,与单调性、周期性和对称性、最值有关的问题;三是三角形中的三角问题.
高考数学对这部分内容的命题有如下趋势:⑴降低了对三角变形的要求,加强了对三角函数的图象和性质的考察.⑵多是基础题,难度属中档偏易.⑶强调三角函数的工具性,加强了三角函数与其他知识的综合,如与向量知识、三角形问题、解析几何、立体几何的综合。以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点。
6.向量:分值在10分左右,一般有一道小题的纯向量题,另外在函数、三角、解析几何与立体几何中均可能结合出题。向量是高考数学新增的重点内容,它融代数特征和几何特征于一体。
高二数学在高考中所占的比例
50%。由于高三都是处在复习的阶段,没有学习新的知识,根据我国门发布的高考考试提纲范围可知,在高考的考点中,高一内容高考占比45%,高二内容高考占比50%,剩下的是部分综合题或者创新题型。
高考数学题型有哪些,占比多少?
高考数学题型有哪些,占比多少?成年工作之后想继续提升学历可以选择高考,高考考生以在职成年人为主,入学相对容易,主要是为设计的考试,所以难度普遍不大,考生只要通过高考考试,即可开始接受高等教育。接下来教务老师为大家提供一些高考相关信息,希望能对大家认识高考带来一定的帮助!
新高考数学各部分所占比例是多少?
新高考数学各知识点所占比如下:
一、分数占比
1、5分
2、三大函数5分
3、立体几何初步12分+5分
4、平面几何初步5分+12分
5、算法初步5分
6、统计5分
7、概率 5分+12分
8、三角函数恒等变换5分+5分+12分
9、平面向量5分
10、解三角形5分+12分
11、数列5分+12分
12、不等式5分+12分
13、常用逻辑用语5分
14、圆锥曲线与方程5分+12分
15、空间向量与立体几何5分+12分
16、导数及应用5分+12分
17、推理与证明12分
18、数系扩充与复数的引入5分
19、计数原理5分
20、坐标系与参数方程10分
二、题型
1、选择+填空(8题单选+4题多选+4题填空)16道,每道5分,共80分。占总分的大半。送分题、基础题较多,以书上性质、公式的运用为主。
2、、复数:默认送分题。平面向量:能建系尽量建系做。计数原理:以二次项定理与分配问题居多。统计与概率:可能会在读题上挖坑。其他:命题、各章基本概念、计算(不等式或者比大小)
3、中题会以几何或函数为主,可能会考新定义题。几何:解三角形、立体几何、解析几何。函数:函数(指对幂、正余切)的性质(单调奇偶对称周期)与图像(识别和变换)、简单求导、构造函数(常见于指对数比大小)。
4、新定义题:近年来高考的趋势,题干给出一个新的定义(高中课本里没学过的),然后让你利用其解题。难度一般都不会太大,只要严格按照题干描述一步一步做就行。
高考数学各部分占比重
高考数学总分150分,选择题有8个单选4个多选总共占60分,填空题有4个占20分,解答题有6道,每道12分左右共70分。
一、选择+填空(8单4多4填16道)每道5分,共80分占总分的大半。基础题较多,以书上性质、公式的运用为主。
1、、复数默认送分题。平面向量能建系尽量建系做。计数原理以二次项定理与分配问题居多。统计与概率可能会在读题上挖坑。其他命题、各章基本概念、计算(不等式或者比大小)等。
2、中题会以几何或函数为主,可能会考新定义题。几何解三角形、立体几何、解析几何。函数(指对幂、正余切)的性质(单调奇偶对称周期)与图像识别和变换、简单求导、构造函数(常见于指对数比大小)。
3、新定义题近年来高考的趋势,题干给出一个新的定义(高中课本里没学过的),然后让你利用其解题。难度一般都不会太大,只要严格按照题干描述一步一步做就行。相对来说选填技巧较多,注意对答题时间的把控,争取做到又快又准!
二、解答题6道,每道12分左右,共70分,涉及板块比较固定。新高考取消了选答题,都是必答题。
1、数列知识点比较集中,通常高考不会与其他知识点交叉。基本就是考一问求通项,二问求和,最值问题出现频率较低。
2、三角涉及的板块很多,但恒等变换是基础,基础公式必须熟练掌握。通常以解三角形为主,有时会掺杂一些三角函数的知识点。解三角形通常一问边角互化,二问平面几何计算,也有可能考几何计算。三角函数注意恒等变换的应用及正弦型函数的性质。
3、统计与概率这部分知识点很杂,不过除了涉及排列组合的概率题都不难,大部分也可以通过穷举解决,公式什么理解了会看图表就可以解答问题。
高考数学150分值分布 哪部分知识占的分值大
高考数学哪部分分值占得分数比较多呢,高考数学是怎样分布的呢,下面我为大家总结一下,仅供大家参考。
高考数学分值分布 三角函数18分左右;立体几何22分左右;解析几何28分左右;数列18分左右;函数与导数43分左右;不等式12分左右;二项式定理6分左右;复数5分;概率与统计18分左右。各知识点都很平均。解析几何的选择题只是考察概念,不会很难,选择提前10道和大题的三角函数,概率,立体几何, 只多要做题,可以在短时间内突破。
高考数学哪部分最难 高中数学,别说难或者不难,全部要好好学习。为了高考做准备。说的有点片面,但是真的要全部学习。现在的高考考的比较全面。必须按照考学大纲,全部掌握。高中数学都不太容易,理论性的东西多了一些,需要理解和掌握的东西比初中要多。如果前面的一部分学不好,那后面的就会感到越来越难。个人觉得,排列组合中的计算是最难的。但是对于数学中的难易成都也是因人而异的。
高考数学如何取得高分 真懂。知识要掌握准确:在复习中,考生要树立稳扎稳打的习惯,对似懂非懂的基本问题必须实实在在地对待。方法要到位:比如证明问题常用的方法:比较法。2016、2017、2018年高考题都有它的应用,到现在没有变化吗?现在的比较法从高考题上就告诉我们不仅要会直接比较,还要会间接比较即调整后作或作比,而且还要和导数相结合。
真算。提高自己运算能力,也就是加强算功。将运算进行到底,应当始终成为高考复习的一个原则。注重算法,算理。在平时运算时应注重精算、心算、悟算、不算的训练,注重把握好运算方向,选择好的运算公式,避免盲目运算。
天津市数学高考高二下占比
根据天津市2021年高考数学考试大纲来看,高二下学期涵盖了70%的数学考试内容,也就是说占比为70%。这是因为高中数学课程是分三个学期学习的,下学期所学习的内容是第二学期的知识点,是数学知识的延续。而高考数学考试中大多数考点都是在前两学期所学的内容基础上延伸和运用的,因此,高二下学期涵盖了相对较多的高考数学考试知识点。