金属材料的力学性能指的是什么性能
冲击韧性:金属材料抵抗冲击载荷作用下断裂的能力。金属材料的力学性能指的是指材料在一定的环境下,承受各种力的作用而表现出来的特性。在材料学中,力通常称为载荷。外加载荷(力)有各种形式,比如对材料拽一拽看看怎么样,称为拉伸、对材料压一压称为压缩、对材料掰一掰称为弯曲、对材料拧一拧称为扭转、使劲打一下称为冲击、如此等等,凡是在这种力的作用下,材料表现出来的行为,就称为该材料的力学性能。常见的力学性能有强度、硬度、塑性、韧性、冲击韧度、疲劳等等。它们又可细分。比如强度,如果是拉伸,拉断前承受的应力就称为抗拉强度,同样的,有抗压强度、扭转强度、弯曲强度、疲劳强度等等。
材料力学性能 材料力学性能的意义和作用
材料力学性能 材料力学性能的意义和作用
主要反映材料在受力后表现出的能力,比如强度,反映材料抵抗破坏的能力,强度越高,越结实.材料的力学性能很重要,除一些特殊性能要求的材料以外,在材料选用上主要考虑力学性能.
金属的力学性能是指在力的作用下,材料所表现出来的一系列力学性能指标,反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力。
5.抗剪强度金属的力学性能是指在力的作用下,材料所表现出来的一系列力学性能指标,反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力。
金属材料的力学性能包括强度、塑性、硬度、冲击韧度和疲劳等项目。
金属材料的力学性能是指材料在外力的作用下抵抗变形和破坏的能力.
30CrMnTi是什么材料 成分是什么 力学性能 热处理规范
1:伸长率(延伸率)45
疲劳强度:当金属材料在无数次重复活交变载荷作用下而不致引起断裂的应力。钢的回火温度回火:
一般取中偏下的回火温度,按HRC=62-T×T/9000
进行计算,并结合每台炉子自身温及淬火情况进行适当调整。
合金结构钢调质:淬火冷却时要适当缩短水冷时间,增加空冷时间,从而避免开裂。
热处理工艺:
1.退火作方法:将钢件加热到Ac3+30~50度或Ac1+30~50度或Ac1以下的温度(可以查阅有关资料)后,一般随炉温缓慢冷却。
2.正火作方法:将钢件加热到Ac3或Accm以上30~50度,保温后以稍大于退火的冷却速度冷却。
3.淬火作方法:将钢件加热到相变温度Ac3或Ac1以上,保温一段时间,然后在水、硝盐、油、或空气中快速冷却。目的:淬火一般是为了得到高硬度的
马氏体组织,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体组织,以提高耐磨性和耐蚀性。
4.回火作方法:将淬火后的钢件重新加热到Ac1以下某一温度,经保温后,于空气或油、热水、水中冷却。
6.时效作方法:将钢件加热到80~200度,保温5~20小时或更长时间,然后随炉取出在空气中冷却。目的:1.稳定钢件淬火后的组织,减小存放或使用期间的变形;2.减轻淬火以及磨削加工后的内应力,稳定形状和尺寸。
7.冷处理作方法:将淬火后的钢件,在低温介质(如干冰、液氮)中冷却到-60~-80度或更低,温度均匀一致后取出均温到室温。
8.火焰加热表面淬火作方法:用氧-乙炔混合气体燃烧的火焰,喷射到钢件表面上,快速加热,当达到淬火温度后立即喷水冷却。
9.感应加热表面淬火作方法:将钢件放入感应器中,使钢件表层产生感应电流,在极短的时间内加热到淬火温度,然后喷水冷却。
10.渗碳作方法:将钢件放入渗碳介质中,加热至900~950度并保温,使钢件便面获得一定浓度和深度的渗碳层。
11.氮化作方法:利用在5..~600度时氨气分解出来的活性氮原子,使钢件表面被氮饱和,形成氮化层。
12.氮碳共渗1.冲击韧性作方法:向钢件表面同时渗碳和渗氮。目的:提高钢件表面的硬度、耐磨性、疲劳强度以及抗蚀能力。
正火
860±10℃正火,出炉空冷。
840±10℃淬水或油(视产品型状复杂程度),680-700度回火。
2)调质
840±10℃淬油,再470度回火处理。
hrc41-45
3)调质
840±10℃淬油,再480度回火处理。
hrc35-45
4)调质
hrc38-42
5)调质
hrc40-43
6)调质
850℃淬油,再510℃回火处理。
hrc36-42
7)调质
hrc32-36
8)调质
860℃淬油,再390度回火处理。
hrc48-52
力学性能有哪些
6.疲劳强度:材料零件材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。和结构零件对疲劳破坏的抗力2.强度:金属材料在静载荷作用下抵抗变形或断裂的能力.同时,它也可以定义为比例极限、屈服强度、断裂强度或极限强度。没有一个确切的单一参数能够准确定义这个特性。因为金属的行为随着应力种类的变化和它应用形式的变化而变化。强度是一个很常用的术语。
3.塑性:金属材料在载荷作用下产生变形而不破坏的能力.塑性变形发生在金属材料承受的应力超过弹性极限并且载荷去除之后,此时材料保留了一部分或全部载荷时的变形.
4.硬度:金属材料表面抵抗比他更硬的物体压入的能力
5.韧性:金属材料抵抗冲击载荷而不被破坏的能力. 韧性是指金属材料在拉应力的作用下,在发生断裂前有一定塑性变形的特性。金、铝、铜是韧性材料,它们很容易被拉成导线。
8.延展性 延展性是指材料在拉应力或压应力的作用下,材料断裂前承1、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。受一定塑性变形的特性。塑性材料一般使用轧制和锻造工艺。钢材既是塑性的也是具有延展性的。
9. 刚性 刚性是金属材料承受较高应力而没有发生很大应变的特性。刚性的大小通过测量材料的弹性模量E来评价。
10.屈服点或屈服应力 屈服点或屈服应力是金属的应力水平,用MPa度量。在屈服点以上,当外来载荷撤除后,金属的变形仍然存在,金属材料发生了塑性变形。
衡量钢材力学性能的四大指标是什么
从力的三要素去想.即;力的作用点,力的大小及力的方向.有了这三要素再结合数学就对力学进行讨论了.如压力,拉力.弯力矩,扭曲力矩等还有疲劳强度等等钢材常见的力学性能通俗解释归为四项,即:强度、硬度、塑性、韧性。
1.屈服点(σs)
钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa)
有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2。
3.抗拉强度(σb)
4.伸长率(δs金属的力学性能是指金属材料抵抗各种外加载荷的能力,其中包括:弹性和刚度、强度、塑性、硬度、冲击韧度、断裂韧度及疲劳强度等,它们是衡量材料性能极其重要的)
5.屈强比(σs/σb)
钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。
6.硬度
硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征 。
2.强度:金属材料在静载荷作用下抵抗变形或断裂的能力.同时,它也可以定义为比例极限、屈服强度、断裂强度或极限强度。没有一个确切的单一参数能够准确定义这个特性。因为金属的行为随着应力种类的变化和它应用形式的变化而变化。强度是一个很常用的术语。
3.塑性:金属材料在载荷作用下产生变形而不破坏的能力.塑性变形发生在金属材料承受的应力超过弹性极限并且载荷去除之后,此时材料保留了一部分或全部载荷时的变形.
4.硬度:金属材料表面抵抗比他更硬的物体压入的能力
5.韧性:金属材料抵抗冲击载荷而不被破坏的能力. 韧性是指金属材料在拉应力的作用下,在发生断裂前有一定塑性变形的特性。金、铝、铜是韧性材料,它们很容易被拉成导线。
8.延展性 延展性是指材料在拉应力或压应力的作用下,材料断裂前承受一定塑性变形的特性。塑性材料一般使用轧制和锻造工艺。钢材既是塑性的也是具有延展性的。
9. 刚性 刚性是金属材料承受较高应力而没有发生很大应变的特性。刚性的大小通过测量材料的弹性模量E来评价。
10.屈服点或屈服应力 屈服点或屈服应力是金属的应力水平,用MPa度量。1.强度极限在屈服点以上,当外来载荷撤除后,金属的变形仍然存在,金属材料发生了塑性变形。
金属材料的力学性能有哪些,分别用什么符号表示,它们在工程上的意义是什么
铸铁拉伸压缩时的力学性能:强度极限1)调质是指标,断口形状为沿斜截面错动而破坏,断口与截面成角,抗压强度极限为拉伸时的4~5倍,沿斜截面错动而破坏,断口与斜截面约略成角,只适合作受压构件。σs 屈服强度、σb 抗拉强度、δ 伸长率、ψ 断面收缩率、ak 冲击韧性、HR 洛①.延性:是指材料的结构、构件或构件的某个截面从屈服开始到达承载能力或到达以后而承载能力还没有明显下降期间的变形能力。氏硬度、HV 维氏硬度、HBS 布氏硬度.
请教力学性能与机械性能的区别?
拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。长度和横向尺寸的比例关系也有1.脆性 脆性是指材料在损坏之前没有发生塑性变形的一种特性。它与韧性和塑性相反。脆性材料没有屈服点,有断裂强度和极限强度,并且二者几乎一样。铸铁、陶瓷、混凝土及石头都是脆性材料。与其他许多工程材料相比,脆性材料在拉伸方面的性能较弱,对脆性材料通常采用压缩试验进行评定。如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截面试样,按照面积换算规定或者。试样两端的粗大部分用以和材料试验机的夹头相连接。试验结果通常绘制成拉伸图或应力-应变图。图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力σ=P/A)。图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。应该是一样吧材料在拉伸过程中,从开始到发生断裂时所达到的应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。设Pb为材料被拉断前达到的拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo(MPa)。。
金属的力学性能(或叫机械性能)是金属材料抵抗外力作用的能力。钢的力学性能检验,就是利用一定外力或能量作用于钢的试样上,以测定钢的这种能力。根据试验方法的不同,可测得多种力学性能指标。钢的常用力学性能指标包括硬度(布氏硬度、洛氏硬度、维氏硬度、肖氏硬度等)、抗拉强度、屈服点、断后伸长率、断面收缩率、冲击吸收功等。
材料的力学性能总体包括那些?
四:塑3)硬度金属材料表面抵抗局部变形,特别是塑性变形,压痕的能力,称为硬度金属材料的硬度值越大,表示材料硬度越高通常表示硬度的指标有布氏硬度和洛氏硬度性指标材料的力学性能:主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。它们是设计各种工程结构时选用材料的主要依据。各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。材料的各种力学性能分述如下:材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。材料的这种性能称为弹性。外力卸除后即可消失的变形,称为弹性变形。表示材料在静载荷、常2.条件断裂韧度温下弹性性能的一些主要参量可以通过拉伸试验进行测定。—青岛同科研究所
力学性能包括什么?
850℃淬油,再560℃回火处理。弹性性能 材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。材料的这种性能称为弹性。外力卸除后即可消失的变形,称为弹性变形。表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。
热处理是指材料在固态下,通过加热、保温和冷却的手段,以获得预期组织和性能的一种金属热加工工艺。(1)金属材料在载荷作用下所表现出来的特性,称为力学性能。
(2)金属的力学性能主要有强度,塑性,硬度和韧性。
疲劳强度(断裂)(3)硬度是衡量金属材料软硬程度的力学性。
(4)常用的硬度有:布氏硬度,洛氏硬度和维氏硬度。
(5)如上硬度分别用HBW,HRC,HV 。
强度、硬度、塑性、韧性、疲劳强度这五点!
金属材料的性能
工程上常将δ≥5%的材料称为塑性材料,如常温静载的低碳钢、铝、铜等;而把δ≤5%的材料称为脆性材料,如常温静载下的铸铁、玻璃、陶瓷等。金属材料的使用性能 1. 密度(比重):材料单位体积所具有的质量,即密度=质量/体积,单位为g/cm3。 2. 力学性能: 金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度 、硬度等。 3. 强度: 金属材料在外力作用下抵抗变形和断裂的能力。屈服点、抗拉强度是极为重要 的强度指标,是金属材料选用的重要依据。强度的大小用应力来表示,即用单位面积所能承 受的载荷(外力)来表示。 4. 屈服点: 金属在拉力试验过程中,载荷不再增加,而试样仍继续发生变形的现象,称 为“屈服”。产生屈服现象时的应力,即开始产生塑性变形时的应力,称为屈服点,用符号 σs表示,单位为MPa。 5. 抗拉强度: 金属在拉力试验时,拉断前所能承受的应力,用符号σb表示,单位 为MPa。 6. 塑性: 金属材料在外力作用下产生变形(去掉外力后不能恢复原状的变形),但不 会被破坏的能力。 7. 伸长率: 金属在拉力试验时,试样拉断后,其标距部分所增加的长度与原始标距长度 的百分比,称为伸长率。用符号δ,%表示。伸长率反映了材料塑性的大小,伸长率越大, 材料的塑性越大。 8. 韧性: 金属材料抵抗冲击载荷的能力,称为韧性,通常用冲击吸收功或冲击韧性值来 度量。 9. 冲击吸收功: 试样在冲击载荷作用下,折断时所吸收的功。用符号A?k表示,单位为J 。 10. 硬度: 金属材料的硬度,一般是指材料表面局部区域抵抗变形或破裂的能力。根据试 验方法和适用范围的不同,可分为布氏硬度和洛氏硬度等多种。布氏硬度用符号HB表示:洛 氏硬度用符号HRA、HRB或HRC表示。
包括很多,低碳钢是塑性材料,低碳钢抗压能力非常强,而铸铁是脆性材料,抗压能力远远大于抗拉能力。力3、材料的冲击韧度检测学性能和耐蚀性最为普遍。另外还有磁性能,电性能等
材料力学性能检测项目有哪些
hb<2171、材参考资料:料强度和塑性检测:
(1)拉伸强度 弯曲强度
(2)摩擦和磨耗性能(摩擦系数、磨耗)
(3)蠕变性能
(4)动态力学性能
2、材料硬度检测
(1)耐撕裂性能(撕裂强度)
(2)剪切性能(剪切强度)
(1)冲击性能(缺口冲击强度、无缺口冲击强度)
(2)压缩性能
4、材料疲劳强度②.展性:指物体可以压成薄片的性质。检测
材料的机械性能是什么意思?
土工合成材料的力学性能主要包括拉伸性能、撕破能力、顶破能力、刺破能力、穿透强力和摩擦性能等。金属材料在载荷作用下抵抗破坏的性能,称为机械性能(或称为力学性能)。金属材料使用性能的好坏,决定了它的使用范围与使用寿命,金属材料的机械性能是零件的设计和选材时的主要依据,外加载荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求的机械性能也将不同。
2)塑性金属材料的断裂前发生塑性变形的能力,称为塑性它常用金属材料的伸长率δ和截面收缩率ψ来表示其公式为:钢材经过冷加工后,在常温下存放15-20天,或加热至100-200度并保持2小时左右,这个过程称为时效处理。所谓时效敏感性:因时效作用导致钢材性能改变的程度。一般,钢材机械强度提高,而会导致塑性和韧性降低。
硬度:金属材料抵抗更硬的物体压入其内的能力。通常说一种金属机械性能不好,是指它易折,易断,或者是没有良好的打磨延展性。一般纯金属的机械强度都要弱于合金的强度,举例来说就是钢的性能好于纯铁。
常说的机械性能主要有:弹性、塑性、刚度、时效敏感性、强度、硬度、冲击韧性、疲劳强度和断裂韧性等。
弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。
塑性:金属材料在外力作用下,产生变形而不致引起破坏的能力。
刚度:金属材料在受力时抵抗弹性变形的能力。
强度:金属材料在外力作用下抵抗塑性变形和断裂的能力。
断裂韧性:用来反映材料抵抗裂纹失稳扩张能力的性能指标。